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Abstract. Much attention has been focused in recent decades on the process of double
photoejection, with comparatively little study of the closely related process of photoejection plus
excitation of the residual fragment. We present new calculations for the processhν + He→
He+(n)+ e−, which quantitatively reproduces recent experimental measurements (Wehlitz Ret
al 1997 J. Phys. B: At. Mol. Opt. Phys.30 L51). These calculations show that the controlling
electron correlations are confined to distances much smaller than the extent (∼ 3n2/Z au) of the
He+(n) state that is excited.

Several outcomes are possible when a two-electron atom or ion absorbs a photon with an
energy large enough to eject both electrons. One electron can absorb all of the photon’s
energy, leaving the remaining electron in a 1s state. This is observed to be the most likely
possibility for helium, and would in fact be the only possible process if all electron–electron
interactions were neglected. Different processes can occur if one electron absorbs all of the
photon’s energy, but exchanges energy with the other electron as it attempts to leave the
atom. (This energy exchange is in contrast to ‘shake-off’-type approximations, which neglect
final-state correlations.) If the energy-sharing process is such that both electrons possess
enough energy to leave the atom, then double escape can occur (double photoejection).
Conversely, one electron may not receive enough energy to escape the atom, but will be able
to reach highern states, a process we will denote as photoejection-induced excitation (PIE)
(a small contribution to these processes also occurs due to electron–electron interactions in
the ground state). The quantitative description of this latter process is the subject of this
letter. In particular, we present theoretical evidence that the ‘decision’ as to which set of
principal quantan will be excited in a PIE process is made at surprisingly short distances
r0 � 3n2/Z au, the extent of the He+(n) state. That is, information extracted from a
short-range calculation (r < r0) correctly apportions energy between a residual fragment
much larger thanr0 and an escaping electron.

Although there has been much focus on the ratio of double to single photoejection in
characterizing the strength of electron–electron interactions, the role of these interactions
in PIE have been somewhat neglected. Previous experimental and theoretical attempts to
determine PIE cross sections in helium have recently been summarized by Wehlitzet al [1].
In addition, Wehlitzet al have published experimental values for the intensity of helium
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satellites He+(n) (n = 2–6) relative to the main (n = 1) line over a wide range of photon
energies above the double-escape threshold. Previous studies had focused primarily on the
low satellite states(n 6 3) over a limited range of photon energies. Various studies have
also addressed the closely related problem of target excitation by electron impact for e–H
[2], e–He+ [3] and e–He [4] scattering.

The use of finite-range pseudostates [5, 6] has been shown to permit an approximate
description of the two-electron continuum within an enlarged view of the close-coupling
framework [7]. Yet the expectation of traditional close-coupling theory has remained,
namely that excitation of a high-lying bound state of principal quantum numbern requires
the use of a basis set whose spatial extent encompasses the size of that entire hydrogenic
eigenstate. The theoretical development below shows that this view is too pessimistic: it is
possible to describe the excitation of He+(n) using a surprisingly compact variational basis
set.

In this study, we combine the eigenchannelR-matrix method with a finite-element
approach to address PIE processes. The starting point of this method (see figure 1) is
the generation of a set of eigenstatesφn̄ of the target-state Hamiltonian in ashrunken
configuration space. Virtually all methods used currently utilize some such set of shrunken
eigenstates. TheR-matrix scheme adopted here confines the target states to 0< r < r0 by
simply limiting the Hilbert space to those functions that vanish atr = r0. Other methods
(e.g. convergent close coupling) produce a shrinkage by using a finite discretized basis set
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Figure 1. Comparison of the energy spectra of the eigenstates of the physical target-state
Hamiltonian with the eigenstates of the target-state Hamiltonian in a shrunken configuration
space. The physical target states consist of a Rydberg series and an infinite set of continuum
states of energyε, whereas only discrete states appear for the spectrum in the shrunken space.
Note the good correspondence in energies for the lowest few states, as these physical states fit
within the shrunken configuration space.
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each of the additional members of which extend to successively larger radii. Hyperspherical
studies [8] obtain a discrete representation by converting the ratio of the inner and outer
electron radial coordinates into an angle with a finite range.

All methods, including ours, solve the time-independent Schrödinger equation by an
expansion into this basis set, either explicitly or implicitly. We obtain our initial state,
which fits within the shrunken configuration space, by simply diagonalizing the Hamiltonian
matrix (including ‘all’ electron–electron correlation effects), formed using a two-electron
finite-element basis set consisting of elements which vanish on the surface of the reaction
volume.

In contrast to the initial state, the final-state wavefunction is a solution of the Schrödinger
equation for specific total energyE, the sum of the initial state and photon energies. After
rearranging the Rayleigh–Ritz variational principle for a specified energy and imposing the
eigenchannelR-matrix choice that the logarithmic derivative of the wavefunction is constant
over the surface of a finite reaction volume [9], we obtain a generalized eigensystem. Our
choice of basis set is an expanded version of the basis set used to obtain the initial state.
In addition to finite elements which vanish atr = r0, we include products of one-electron
target eigenstates that vanish atr = r0 with a one-electron finite basis function that isnon-
vanishingat r = r0. This addition to our basis set is necessary for describing a final-state
wavefunction which is non-zero on the surface of the reaction volume. By solving for the
eigenvalues of a generalized eigensystem, we obtain a set of independent solutions equal
in number to the number of open or weakly closed channels included in our calculation
(the latter are energetically forbidden at larger radial distances, but still participate in the
short-range physics).

We have previously applied this method to treat two-electron photoejection processes
[10, 11]. In addressing two-electron escape, one might suspect that we include products of
two non-vanishing one-electron basis functions for our final-state basis set. However, this
is not the case. Inclusion of such product-type basis functions would require a two-particle
matching scheme with a wavefunction representing the motion of the two electrons outside
of the reaction volume. The determination of an exact analytical expression for the three-
body Coulomb continuum wavefunction remains an unsolved problem [12]. By selecting
product basis functions in which the radial coordinate of at least one electron is zero on
the surface of the reaction volume, we are able to employ the same one-electron matching
scheme used for describing single-electron escape.

Our choice of basis set also allows us to distinguish between an ‘inner’ electron and
an ‘outer’ electron, at least in the region outside the reaction volume. There we make
the approximation that the inner electron effectively shields the nucleus, leaving the outer
electron in a Coulomb potential of chargeZ − 1, whereZ is the nuclear charge. Inherent
in this approximation is the assumption of an unequal energy distribution between the two
escaping electrons; that is, one electron receives most of the photon’s energy and quickly
leaves the atom (with excess energyE1). The remaining electron is temporarily left near
the nucleus before eventually escaping (with excess energyE2). At energies just above
threshold, double-escape events are known to occur with equal probabilities for all possible
values ofE1/E2 [13]; therefore, our approximation is poorest for this energy range. Already,
at a few eV above threshold, however, experiment has shown [14] that double escape is
dominated by unequal energy sharing processes. For this reason, we have confidence that
our method will give accurate results for all energies except within a few eV of threshold.

An important issue for our approach is the interpretation of the eigenstates representing
the ‘inner’ electron. Since these states are eigenstates of the target Hamiltonian that only
span a shrunken configuration space, it is natural to ask how this method can describe two-
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electron escape or single-electron escape with the remaining electron excited to a hydrogenic
state that ranges outside our box. We view the inner electron pseudostates (target eigenstates
in a shrunken configuration space) as simply representing a convenient intermediate basis
set that ‘discretizes the continuum’. Ultimately, in order to describe real observables, we
must express our results in terms of physical target eigenstates (see figure 1). Although the
one-electron pseudostates form a complete set in the shrunken Hilbert space, we can also
view these functions as belonging to the entire Hilbert space, being defined as identically
zero for r > r0. Each of these pseudostate functions can then be projected out onto a
complete set of states spanning the entire Hilbert space, namely the infinite discrete set of
bound target eigenstatesn = 1, 2, 3, . . . and the uncountable infinity of target continuum
states of positive energyε.

The projection method we have adopted (referred to in [15] as a frame transformation)
was used previously to relate pseudostate excitation cross sections to ionization cross
sections in electron scattering [15] and to double-escape cross sections in electron
photoejection processes [11]. The total double-escape cross section is constructed by
summing over the projections of the pseudostate probability amplitudes onto the physical
hydrogenic continuum states of energyε, then integrating the squared amplitude over the
continuum state energy for 06 ε 6 E. The photoejection cross section is given (in au) by

σ = 4π2αω
∑
l

∫ E

0
dε

∣∣∣∣∑
n̄l̄

〈εl|n̄l̄〉D(−)box
n̄l̄,g

∣∣∣∣2 (1)

whereD(−)box
n̄l̄,g

represents the length form of the dipole matrix element for excitation of the
inner electron from the ground state ‘g’ to the final pseudostatēnl̄, α is the fine-structure
constant andω is the photon energy in au. In order to obtain cross sections for PIE we
project the inner electron pseudostates onto bound hydrogenic target states; that is, the box
dipole matrix elementsD(−)box are related to the physical dipole matrix elementsD(−)phys

by

D
(−)phys
nl,g =

∑
n̄l̄

〈nl|n̄l̄〉D(−)box
n̄l̄,g

(2)

wheren̄l̄ label final pseudostates corresponding to the inner electron,nl label the final bound
target eigenstates andg refers to the two-electron ground state. This frame transformation
technique is used to obtain the results shown below.

The low-n target states (n = 1, 2, 3) fit within our R-matrix box. The energies of
the eigenstatesφn̄ of the target-state Hamiltonian in the shrunken configuration space
therefore correspond closely to the energies of the physical target state for these low-n

values (see figure 1). Consequently, the frame transformation technique (equation (2)) is
not required for calculating accurate PIE cross sections for these states. For excitation
to higher n states, the physical target states are represented by the set of pseudostates
confined to ourR-matrix box. A simple picture of the remaining electron being in a high
Rydberg state indicates that it has a large probability of ‘being located’ outside our reaction
volume, the region where our simplified assumption of electron–electron interactions is
imposed. For this reason, one expects that only a method which could accurately represent
electron–electron correlations out to large distances (large enough to contain the inner
electron wavefunction) would be capable of accurately describing excitation to high-n states.
However, a previous application of our method to describe helium double photoejection gave
reasonable results [11]. This application involved the projection of our pseudostates onto
the physical continuum eigenstates which extended out to infinity. Therefore, it should
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Figure 2. σn/σ1s branching ratios forn = 2–6. The curves are our calculated eigenchannel
R-matrix values, while the circles are the experimental values of Wehlitzet al [1].

not be totally unexpected that this method can also describe excitation to high-lying bound
states which extend beyond ourR-matrix box.

The comparison of ourσn/σ1s branching ratios with the experimental values of Wehlitz
et al [1] is shown in figure 2. Our results for the first 200 eV above threshold were obtained
by averaging over five box sizes in the range 12–16 au, while results at higher energies were
obtained with a single box size of 10 au. A smaller reaction volume can be used at higher
energies since electron correlations are more tightly confined near the nucleus. Gailitis
averaging, as described in [10], was used to further improve the stability of the calculation.
Photoionization with the remaining electron left in a 1s state accounts for roughly 90% of
the total single-ionization cross section in helium. Our ratios forn = 2 andn = 3 agree
well with the experimental values across an energy range from the double-escape threshold
(78.98 eV) up to 500 eV, although a few of our calculated values lie slightly outside
the experimental error bars. Remarkably, this good agreement also holds forn = 4–6,
even though these states extend beyond ourR-matrix box. This indicates that long-range
correlations between electrons have little effect on the electron energy distribution for PIE
processes to high-n states; that is, the ‘decision’ of the inner electron to be excited to a
highern state is made while the electron is still near the nucleus.

Although the experiment of Wehlitzet al was only capable of measuring cross section
ratios, they extracted absolute cross sections by using the total cross section measurements
from Samsonet al [16]. Ourn = 1 absolute cross sections lie within the error bars of Wehlitz
et al over the entire energy range. The single-ionization cross section of helium-like systems
decreases [17] asE−7/2 at high (but non-relativistic) energies. Our calculated partial cross
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sections are found to decrease at a slightly faster rate at high photon energies, indicating that
the limiting E−7/2 dependence has not yet been attained. Partial cross sections for helium
are found to scale as 1/n3 for n > 3, a consequence of the 1/n3 frequency scale of Rydberg
electrons to be located near the target nucleus. This scaling relationship improves at higher
photon energies (greater than 100 eV above the double-escape threshold). Another feature
of the partial cross section ratios is the appearance of a peak value at energies of several
eV above threshold forn = 4–6. This feature is also seen in the experimental data. Peaks
are observed in our He+(n) absolutecross sections forn > 5.

Partial cross sections calculated for H− were found to exhibit many of the same features
as in helium. A box of roughly twice the radius used in our helium calculations is required
to accurately describe H− PIE, since hydrogen wavefunctions extend roughly twice as far
as those of He+. In contrast to helium, then = 2 partial cross section for H− is about
two-thirds as large as then = 1 cross section. This is primarily a reflection of the relatively
large overlap of the H− ground state with then = 2 target eigenstates. Ourn = 1 and
n = 2 cross sections agree well with the theoretical values of Broad and Reinhardt [18].
Peaks occur in ourn = 5 andn = 6 branching ratios at energies above the double-escape
threshold, and these partial cross sections are also observed to satisfy a 1/n3 scaling law
for n > 3.

Our present eigenchannelR-matrix approach neglects the exchange of angular
momentum and energy between the electrons in the region outside of the reaction volume.
As such, this approach does not represent all of the details of a scattering process that are
sensitive to long-range forces other than a screened Coulomb potential. Our approximation
for the wavefunction outside of the reaction volume neglects the effect of long-range
multipole interactions between the outer electron and the remaining fragment. The effect of
neglecting the long-range dipole interaction can be understood by examining the form of this
interaction as outlined by Gailitis and Damburg [19]. The dipole interaction mixes states
with the same specified principal quantum number but different angular momentum values.
Our method is therefore able to properly predict the correct cross sections for PIE to the
n = 2 state, but might not be expected to give accurate amplitudes of the individual Gailitis–
Damburg eigenstates (eigenstates of the dipole matrix with basis elements|2sεp〉, |2pεs〉 and
|2pεd〉). A previous study [20] showed that there are no major difficulties in including the
long-range dipole interaction in an eigenchannelR-matrix approach. It is possible that
these long-range correlations could still play an important role in determining the angular
distribution of the photoelectron; this issue remains to be tested.

In conclusion, we have studied the role of electron–electron interactions in PIE
processes. Although PIE has not received as much attention as double escape, this process
represents an alternative and equally informative probe of electron correlations. Our study
indicates that the use of a basis set restricted to a very small region in configuration
space is sufficient for describing excitation to high-n states. This is a surprising result,
as it was previously thought that long-range correlations played a significant role in these
processes. Discrete channel expansions can therefore be applied efficiently to a broader
class of problems than was previously thought possible.
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