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We study the superfluid character of a dipolar Bose-Einstein condensate (DBEC) in a quasi-two
dimensional geometry. We consider the dipole polarization to have some nonzero projection into the plane
of the condensate so that the effective interaction is anisotropic in this plane, yielding an anisotropic
dispersion relation. By performing direct numerical simulations of a probe moving through the DBEC, we
observe the sudden onset of drag or creation of vortex-antivortex pairs at critical velocities that depend
strongly on the direction of the probe’s motion. This anisotropy emerges because of the anisotropic

manifestation of a rotonlike mode in the system.
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A quintessential feature of a superfluid is its ability to
support dissipationless flow. For example, a small probe
can move through the a superfluid without experiencing a
drag force, provided that it moves below a certain critical
velocity. As Landau famously explained, when this critical
velocity is exceeded, energy can be dissipated into collective
excitations of the fluid, leading to a nonzero drag force on the
probe [1]. In a dilute superfluid such as a Bose-Einstein
condensate (BEC) of alkali atoms, these excitations are
simply sound waves and the critical velocity is equal to the
sound velocity. By contrast, for a strongly interacting super-
fluid such as liquid “He, the relevant excitations correspond
to nontrivial many-body excitations, dubbed rotons. These
modes lead to a superfluid critical velocity that is signifi-
cantly less than the speed of sound. Moreover, they represent
a vital link between a macroscopic observable such as super-
fluidity, and the detailed, microscopic physics of the fluid.
This critical velocity has been verified experimentally via
measurements of ion-drift velocity in the superfliud phase of
“He [2].

Currently, a major research thrust is working to produce
BECs composed of particles with dipolar interactions, using
either strongly magnetic atoms [3] or dipolar molecules [4].
This fascinating new breed of superfluids can also exhibit
rotonlike features in their spectra, despite existing in a dilute
gaseous state [5]. By tuning either the dipole moment or the
density of the constituents, the spectra of these gases can be
widely varied [6]. The relation between superfluidity and
elementary excitations can therefore be probed in these
gases as never before. Moreover, these dipolar BECs
(DBECs) bring something entirely new to the subject,
namely, an anisotropic interaction that should generate an
anisotropic critical velocity. It is this basic property of
anisotropic superfluidity that we explore in this Letter.

We consider a DBEC in a quasi-two-dimensional
(Q2D), or pancake-shaped trapping potential and allow
the dipoles to be polarized at an arbitrary angle with
respect to this plane. Numerical simulations of a probe
moving through the DBEC reveal a sudden onset of drag
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at a critical velocity that is quite different for different
directions of the probe’s motion. Specifically, the critical
velocity is larger in the direction parallel to the dipoles’
orientation than in the perpendicular direction. In spite of
this anisotropy, the speed of sound, corresponding to long-
wavelength excitations, remains isotropic. For sufficiently
small probes, the drag is due to the excitation of the roton-
like modes, whereas for larger probes it arises from the
production of vortex-antivortex pairs, as observed in iso-
tropic alkali-atom BECs [7,8]. Even in this case, however,
the spinning off of vortices depends strongly on the direc-
tion of motion of the probe, so that the effects of anisotropy
should be readily observable.

We work in a Q2D geometry by assuming that there is a
strong one-dimensional (1D) harmonic trap in the z direc-
tion, U p(z) = %mw%f, where m is the bosonic mass and
w, is the trapping frequency. This allows the condensate
wave function to be written in the separable form W(r, 1) =
x(2) ¥ (p, t) where x(z) is the ground state harmonic oscil-
lator wave function. By inserting this ansatz into the
Gross-Pitaevskii equation (GPE), describing the dilute,
zero-temperature DBEC, and integrating out the z depen-
dence, we derive the modified, time-dependent GPE for the
Q2D system,

h2
iho i — {—%w FV,+ gyl + gdcb}w, (1)

where ¢ = i/(p, t) is the in-plane condensate wave func-
tion, V, = V,(p, 1) is a time-dependent probe potential,
g= 2\/2_7Thzas /ml, is the mean-field coupling for contact
interactions, ay is the scattering length, [, = h/mw, is
the axial harmonic oscillator length, g, = d*/ \/ﬁlZ is
the dipole-dipole interaction (DDI) coupling and g,P =
24P (p, 1) is the mean-field potential due to the DDI, where
O(p, 1) =7 F'[a(k, t)F(%)], and F is the 2D Fourier
transform operator and 7i(k, 1) = F[n(p, 1)].

The function %7 ¢,F(q), where q = kI_/+/2, is the k
space DDI for the Q2D geometry. It has two contributions
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coming from polarization perpendicular or parallel to the
direction of the dipole tilt, F(q) = cos’(a)F(q) +
sin*(a)F)(q) where a is the angle between 2 and the
polarization vector d. These contributions are Fj(q) =
-1+ 3\/E(qt2,/q)eqzerfc(q), where q is the wave vector
along the direction of the projection of d onto the x- y plane,
erfc is the complementary error function and F(q) =
2-3/mge? erfe(q).

To simplify this problem, we rescale energies in units of
the chemical potential, given by u” = gny{l + ,8%” X
(3 cos(a)> — 1)} for the unperturbed system [9]. Here, 8 =
g4/ g. This leads to characteristic units of length given by the
coherence length £ = h/\/mu*, time 7 = h/u*, and ve-
locity ¢* = 4/u*/m. Additionally, we rescale the wave
function ¢y — ¢/, /ny where n is the integrated 2D density
of the unperturbed system. The rescaled coupling constants
are then g* = gno/u” and g; = gano/ 1" = Bg".

The dispersion relation of a homogeneous Q2D DBEC
is given in Bogoliubov theory by [10]

o=+ ee(1+ 7o) o

For a = 0 (polarization along the trap axis) this dispersion
does not depend on the direction of the quasiparticle propa-
gation. However, for a # 0, or for nonzero projection of d
onto the x-y plane, the direction of k becomes important in
describing the quasiparticles of the system. The Landau
critical velocity is determined from the dispersion relation
via v; = min[w(k)/k] [1] so it also depends on the direc-
tion of k and is an anisotropic quantity when | cos(a)| < 1.
Other anisotropic dispersions have been predicted for a 1D
lattice system of Q2D DBECs [11], periodically dressed
BECs [12] and for dipolar gases in a 2D lattice [13].
Additionally in this vein, anisotropic solitons have been
predicted for dipolar gases [14].

To illustrate the anisotropy in v;, we use the parameters
g =025,¢,=036,1./¢ =05and a = 7/4 (u* = 1),
which are chosen to best illustrate anisotropic effects
while keeping safely away from the unstable regime; we
will identify them with experimental parameters below.
Figure 1(a) shows the dispersion calculated using these
parameters for quasiparticle propagation parallel to ( || )
and perpendicular to ( L ) the tilt of the dipoles into the
plane. For parallel propagation, the dispersion resembles
that of a system with contact interactions; the curve goes
smoothly from the linear phonon regime at small k to the
free-particle regime at large k. For this case, v; /c* = 1.0
(dashed red line), meaning that the critical velocity is
identical to the speed of sound. In contrast, the perpen-
dicular dispersion curve exhibits a rotonlike feature at
intermediate k, setting v, /c* = 0.50 (dashed blue line).
The inset in Fig. 1(a) shows wv; as a function of
the azimuthal angle, 7, the angle between k,; and
k. Interestingly, the speed of sound, given by
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FIG. 1 (color online). (a) The Bogoliubov dispersions for
g =0.25,g45=0.36,1./& = 0.5and a = /4 for propagation
perpendicular ( L ) to and parallel ( || ) to the tilt of the dipoles,
shown by the blue and red lines, respectively. The dashed lines
have slopes that are the Landau critical velocities (v;) of the
dispersions, while the inset shows v; as a smooth function of the
angle 1 between the || (/7 = 0) and L (n/7 = 1/2) propaga-
tion directions. (b) A contour plot of the density for a stationary
obstacle with amplitude A,/u”* = 1.0. The shaded region indi-
cates a density exceeding 1.05n(, and the arrow indicates the
direction of polarization. (c) Density slices of (b) along the parallel
(dashed red) and perpendicular (blue) directions. The density
oscillation due to the roton is clear in the perpendicular case.

¢, = lim_y[w(k)/k], is the same for both parallel and
perpendicular propagation, ¢,/c* = 1, and is in fact iso-
tropic. Therefore, the anisotropy in the spectrum occurs
only at finite k due to the presence of an anisotropic roton.

The impact of the anisotropic roton can be directly seen
in the density of the gas. In Fig. 1(b) we show a contour
plot of the density in the presence of a repulsive Gaussian
potential, or ‘“probe,” of the form V,(x,y) =A,exp
(— (2 +y?)/o2) with A,/u* = 1.0 and o,/ = 2.0,
as may be realized by shining a blue-detuned laser on the
system from the z direction. The shaded regions indicate
density above 1.05n, and the arrow indicates the direction
of polarization. In Fig. 1(c) we plot density slices of this
distribution to more clearly show the density profile in the
parallel (dashed red) and perpendicular (solid blue) direc-
tions. Interestingly, the high-density regions occur in the
direction perpendicular to the tilt of the dipoles, the same
direction that exhibits a roton feature in the dispersion.
Rotons have been shown to generate density modulations
in perturbed DBECs [15]. Here we show this modulation
can be anisotropic.
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We now address the question of what happens to this
anisotropic DBEC when the probe is moved through it
with velocity v, by numerically solving Eq. (1) with the
Gaussian potential V,(x — vt,y). For concreteness, we
consider motion parallel and perpendicular to the tilt of
the dipoles by tilting d into the £ and ¥ directions, respec-
tively, while fixing the direction of the probe velocity so
that v = vx.

Figure 2(a) shows the time-averaged drag force (aver-
aged up to r = 1007") acting on a “weak” probe with
parameters A,/u” = 0.1 and o,/£" = 2.0. The force at
time 7 is given by F(1) = — [ d®pl¢s(p, DI2VV,,(p, 1) [16].
In this case, the probe is sufficiently weak so that no vortices
are nucleated in the fluid, and instead only quasiparticles are
excited. The presence of a force on the probe signifies the
excitation of quasiparticles, and thus the breakdown of
superfluid flow. There is a clear anisotropic onset of force
in these simulations that agrees very well with the aniso-
tropic v, given by the Bogoliubov dispersions in Fig. 1(a),
resulting in critical velocities of v,./c* = 0.90(0.46) for
parallel (perpendicular) motion of this probe, determined
by the velocity at which the drag force suddenly rises.

It has been shown that v, is recovered as the true critical
velocity only when the superfluid is perturbed by a vanish-
ingly small object [17,18]. Additionally, while quasiparticle
excitations are a natural feature to study when considering
the breakdown of superfluid flow, they may be difficult to
observe experimentally. Vortices, on the other hand, are
superfluid excitations in the form of topological defects
that create regions of zero density and are easier to observe
experimentally than quasiparticles. The first measurements
of v. in a BEC were from observations of the sudden onset
of heating [7,8], believed to be related to vortex production
in the BECs. More recently, Ref. [19] used experimental
finesse to controllably create vortex pairs to observe v..
Motivated by these circumstances, we investigate the criti-
cal velocity for vortex formation in the Q2D DBEC by
using a moving probe with an amplitude that is linearly
ramped from A, =0to A,/u* = 1.0 in a time 107" with
o /& = 2.0. The critical velocity in this case corresponds
to the probe velocity above which vortices are formed,
signaling the breakdown of superfluidity.

We observe a significant difference in the critical veloc-
ity at which vortices are formed between a probe moving
parallel and perpendicular to the dipole polarization.
In Fig. 2(b) we show the maximum number of vortices
formed within ¢/7" = 100. The critical velocities are
v, = 0.46(0.28) for motion parallel (perpendicular) to
the dipole tilt. These values are about half the value of
the critical velocities obtained using the weaker probe, but
this is not unexpected [16,20]. In a superfluid, vortices
have quantized circulation: ¢v-dl = 2ahn/m, where
v is the velocity field of the fluid and n is an integer,
corresponding to phase winding of 277n around the vortex
core. We count vortices in our simulations by finding the
phase winding on a plaquette of grid points [21].
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FIG. 2 (color online). (a) The mean drag force acting on the
probe with A,/u* = 0.1 and o,/£* = 2.0 calculated up to time
t/7" = 100 for motion perpendicular to (blue diamonds) and
parallel to (red squares) the dipole tilt. The dotted lines represent
the corresponding v, in excellent agreement with the numerical
simulations. (b) The maximum vortex number produced by a
probe with A,/u* = 1.0 and o,/&" = 2.0 calculated up to
t/7 = 100 for motion perpendicular to (blue diamonds) and
parallel to (red squares) the dipole tilt. The corresponding critical
velocities are: v'*) /¢* = 0.27 and vgl)/c* = 0.46.

The physical mechanism that sets the critical velocity
for vortex formation is not rigorously understood.
However, it is theorized that the maximum local fluid
velocity about an obstacle, being larger than the back-
ground flow velocity, sets the critical velocity via the
Landau criterion. This idea has been fruitful [16,20], and
we find qualitative agreement with this theory here, as the
direction with lower v, is also the direction of flow most
likely to spawn vortices. However, we note that the DDI is
anisotropic although the fully condensed (ground) state of
the system is completely isotropic. The anisotropies only
appear in the dispersion relation and in the ground state of
the system in the presence of a perturbing potential, which
is intimately related to the dispersion relation [15]. Thus,
the anisotropies in the critical velocity for vortex formation
are due to the anisotropy of the roton mode, just like the
critical velocities for quasiparticle excitations.

Figure 3 shows contour plots of the condensate density
for both parallel (red contours, top row) and perpendicular
(blue contours, bottom row) motion of the probe relative to
the dipole tilt for velocities v/c* = 0.3 (left column) and
v/c* = 0.5 (right column), where the probe is moving in
the % direction and is located at the origin at the time shown
in Fig. 3. Recall that v/c* = 0.3 is just above v,. for vortex
formation for perpendicular motion, but well beneath v,
for parallel motion. This is reflected in the figure, where in
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FIG. 3 (color online). (a) and (b) The densities are shown for
the || (top, red) and L (bottom, blue) cases for v/c* = 0.30 and
t/7" = 125. Only the L case has exceeded its v.. (¢) and
(d) Densities for v/c* = 0.50 at /7" = 100. The parallel case
(top, red) has exceeded its critical velocity and the perpendicular
case (bottom, blue) has been wildly excited. The obstacle is at
x =y = 0 and moving in the +x direction. The shaded regions
of this plot occur when the density exceeds 1.05n,, and the
arrows indicate the direction of dipole tilt.

(a) no vortices have been formed for parallel motion, while
in (b) a vortex pair has been formed for perpendicular
motion for the same probe velocity.

For the case of v/c* = 0.5, we see that the parallel case
in (c) has formed a vortex pair, and in (d) the perpendicular
case has been wildly excited. There is an important
contrast to be made in the density profiles when there is
a single vortex pair in (b) and (c). In the parallel case (c) we
see that a high density region occurs between the vortex
pair and is elongated in the polarization direction. In con-
trast, for the perpendicular case (b) there is a low density
region between the vortex pair and high-density regions on
either side of the vortex pair. Both the anisotropic super-
fluid critical velocity for vortex pair production and these
contrasting density profiles present means to observe the
effects of the roton in DBEC directly.

In addition to investigating this Q2D system, we have
performed simulations for a fully trapped DBEC. For a trap
aspect ratio of A = a)z/ w, = 50, we find that critical
velocities for vortex production are strongly anisotropic,
and the v are numerically similar to the free case. In these
simulations, we start the probe in the center of the trap and
move outwards in the parallel or perpendicular direction,
linearly ramping the amplitude of the laser down to zero
by the time it reaches the zero density region. Such a
simulation is experimentally realizable in a DBEC of
atomic 2Cr, for example, having a permanent magnetic

dipole moment of 6 5 where up is the Bohr magneton, for
a DBEC with particle number N =~ 18.5 X 103, scattering
length a; = 5.0a, where a is the Bohr radius, radial trap
frequency w, = 27 X 20 Hz and a blue-detuned laser
with width o, = 1.76 um. The speed of sound in this
system is ¢, = 0.16 cm/s in the center of the trap.

In conclusion, we have characterized the DBEC as an
anisotropic superfluid by performing numerical simula-
tions of a blue-detuned laser moving through the system
in directions parallel and perpendicular to the dipole po-
larization. We find a sudden onset of drag on the laser at
velocities that depend strongly on the direction of motion,
and attribute the anisotropy in critical velocity to the
anisotropic roton so that a measurement of an anisotropic
critical velocity in a DBEC corresponds to a measurement
of the roton in the system. Additionally, by considering a
DBEC that is experimentally realizable with atomic >*Cr,
we propose a single, stable constituent with which to study
anisotropic superfluidity, while other systems such as
superfluids of d-wave Cooper pairs are more conceptually
and experimentally difficult to control.
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